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Abstract-Idealized geometric models are presented for cases of cross-sections drawn perpendicular to elongate 
salt domes, where a two-dimensional model is adequate, and cross-sections drawn through the center of 
hemispherical salt domes, where a three-dimensional model is needed. Primary attention is devoted to domes 
during the salt pillow stage of uplift; however, a simple model is provided for the piercement stage as well. 
Mathematical relationships are derived between the cross-sectional area of the dome and the cross-sectional area 
of the associated withdrawal basin. Relationships are also derived relating non-dimensional dome uplift to non- 
dimensional basin subsidence. These relationships must be taken into account when constructing and restoring 
cross-sections of salt domes. Failure to do so can result in significant errors in estimating the amount of salt lost to 
dissolution. In addition, the relationships in this paper imply that there is a change in either salt dome height or 
withdrawal basin depth near the ends of an elongate dome, and predict that restored cross-sections of mini-basins 
developed on thick layers of salt typically will contain more salt than the present-day section. 

INTRODUCTION 

In recent years, there has been increased interest in 

balancing and restoring cross-sections of deformed 
strata above mobilized salt (e.g. Worrall & Snelson 
1989). Doing this correctly requires a thorough under- 
standing of the movement of the salt as well as defor- 
mation styles of the strata to be restored. Brewer (1991) 
discussed styles of domal uplifts in the strata overlying 
salt domes and presented techniques for the restoration 
and interpretation of such structures. Worrall & Snelson 
(1989) and Rowen (1993) described methods for restor- 
ing strata above mobilized salt taking into account such 
things as faulting, compaction and sediment deposition 
during deformation. In the latter papers, the salt is 
assumed to fill all areas not occupied by other litholo- 
gies. Sorenson (1986) discussed corrections which must 
be made to sediment volumes in withdrawal basins to 
account for remobilization of sediment during the rise of 
the diapir. To our knowledge, no work has been pub- 
lished that explicitly considers volume and area relation- 
ships for the salt itself in cross-section. The report 
presented here deals with this problem. Questions that 
will be addressed include: (1) ‘What depth and width 
withdrawal basin is required to provide sufficient salt to 
form a given salt dome, assuming no dissolution of 
salt‘?‘; (2) ‘Under what circumstances can salt dome area 
and withdrawal basin area be assumed to be equal in 
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cross-section?’ and (3) ‘How do these relationships 
change with variations in salt dome geometry?‘. 

The primary focus in this paper is on salt domes that 
have risen to a height less than their defining radius of 
curvature. Beyond this point, the salt dome passes from 
a ‘pillow’ stage to a ‘piercement’ stage and the continued 
growth of the withdrawal basin becomes complicated 
(Bishop 1978, Seni &Jackson 1983, Sorenson 1986). For 
mathematical convenience, salt pillows will be modeled 
geometrically by two end-member geometries; either as 
segments of spheres, having a height less than or equal to 
the radius of the sphere (hereafter called hemispherical 
domes), or elongate, flat-lying segments of cylinders 
with rounded ends (hereafter called elongate or anticli- 
nal domes; Fig. 1). The shapes of real pillows in map 
view will lie somewhere between these end-members. 
Withdrawal basins associated with the pillows will be 
modeled as horizontal slices of doughnut or torus shapes 
surrounding a dome. It will be assumed that, in cross- 
section, both domes and basins are circular arcs defined 
by a fixed radius of curvature. An appendix defining the 
variables used in the equations is provided (Appendix 
A). Use of different shapes for the cross-sectional pro- 
files would change the exact numbers for the relation- 
ships derived, but not the qualitative trends in the 
results. 

Modifications of our calculations to describe a differ- 
ent geometric model for piercement diapirs are con- 
sidered in the Discussion at the end of this paper. 
Qualitative agreement will be obtained between the 
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Fig. 1. Idealized salt dome geometries. The arrows in map view of withdrawat basin indicate the direction of salt flow. 
(a) Idealized hemispherical salt dome. (b) Idealized elongate salt dome. 

calculations for the ‘pillow’ and ‘piercement’ stages of 
salt dome growth, suggesting that the qualitative results 
obtained are not critically dependent on the way in 
which the geometry is described mathematically. 

Although simplified, the geometric models provide 
insight into the relationships between salt dome uplift, 
withdrawal basin subsidence and deformation of over- 
burden. Calculations will be done for dome and with- 

drawal basin areas and volumes for both hemispherical 
and elongate domes. For salt pillows, graphs will be 
constructed to relate salt dome and withdrawal basin 
dimensions and areas during growth of the dome. 
Dimensions and areas will be those seen in a cross- 
section drawn perpendicular to the strike of an elongate 
dome in a location away from its ends and in a section 
drawn through the center of a hemispherical dome. 
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Fig. 2. Parameters used to define domes in cross-section: u = uplift, 
W, = half-width of risen dome, r, = radius of curvature defining arch, 

/3 = angle defining sector, q5 = 012. 

EQUATIONS DESCRIBING SALT DOMES AND 
WITHDRAWAL BASINS DURING THE PILLOW 

STAGE OF UPLIFT 

Area of a dome in cross-section 

A dome may be represented in cross-section as a 
portion of a circular arc (Fig. 2). The sector defined by 
the arc is composed of the dome and two right triangles 
of equal size. The total area of this sector is: 

(1) 

where rd is the radius of curvature of the arc defining the 

dome; and 2@ (or 8 in Fig. 2) is the angle subtended by 
the sector in degrees. 

The cross-sectional area, ‘I,,, of the dome may be 
determined by subtracting the combined area, u2, of the 
triangles from the total area, ai, of the sector. By 
inspection of Fig. 2, the area of one of the triangles is: 

42 = [(Td -- u)wsl 
-7 (2) 

where u equals uplift of the dome and w, equals the 
half-width of the dome. 

Therefore, the cross-sectional area, ad, of the dome 
is: 

Expressing @ in terms of T,, and CI produces: 

Ud = 76y2d cos-‘[l - (uIrci)l 
180 

(rd _ u)w, 
\’ (4) 

In order to compare the areas of domes and with- 
drawal basins, it will be necessary to express equation 
(4) exclusively in terms of yd and u. This can be done by 
using the Pythagorean theorem to relate w, to Ye and LI. 
The relationship is: 

w, = [2YdU - L?]? (5) 

Then, substituting (5) into (4) yields: 

a. b. 

Fig. 3. (a) Parameters used to define hemispherical dome: u = uplift, 
II;, = half-width of dome, q, = cross-sectional arca of dome through its 
center. (b) Elongate dome: I, = length of uplift minus rounded ends. 

Alternatively, (4) can be expressed as a function of u 
and w,. This is desirable in many applications, because, 
in nature, the dome uplift and width are the variables 
that can be directly measured. The radius of curvature, 
Ye, can be eliminated from the equations above by 
expressing it in terms of ~1 and w, as follows. Solving (5) 
for rd produces: 

rd = (w: + c4’)/2u. (7) 

Then, substituting the expression for rd from (7) into (4) 
and simplifying, we have: 

Lid = &[~‘iIcos-i[l - ($fu2,1 

- [(VI - .lws, (8) 

giving an equation that describes the area of a dome in 
terms of the primary variables w, and u. 

Volume of dome 

Idealized, three-dimensional shapes of domes are 
depicted in Fig. 3. The volume of a hemispherical dome 
can be taken directly from Eves (1985). It is: 

L’ d I1 = ; L1(3Wf + L4’), (9) 

where 14 and w, (Fig. 3a) are as defined above. 
The volume of an elongate or anticlinal domal uplift 

can be calculated by summing the volume of the rounded 
ends and the volume of the elongate, middle section of 
the dome (Fig. 3b). The result is: 

V& = V&, + I&, . (10) 

Substituting the solution for V&from (9) and ad from (8) 
into (10) produces the volume of an elongate dome in 
terms of the primary variables w, and 14: 

7 cos-‘[l - (u/rd)] 
Ud == dzr, 

180 
- (r,, - L~)[~Y~u - ~1’1”~. (6) 
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basin basin 
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Fig. 4. Parameters used to define withdrawal basins in cross section: d = axial depth of basin, wb = half-width of basin, 
l,, = radius of curvature defining basin, p = one-half of angle defining basin. 

Area of withdrawal basin in cross-section 

In cross-section, a withdrawal basin is modeled as a 
semi-circular depression (Fig. 4). The cross-sectional 
area of one side of the basin is calculated in a manner 
similar to that for a dome. Variables relating to the dome 
in equations (l)-(8) are replaced with the corresponding 
variables relating to the withdrawal basin (see Fig. 4). 
The radius of curvature, r,, for the dome is replaced 
with the radius of curvature, rb, defining the withdrawal 
basin. The angle I$ for the dome is replaced with the 
angle /3, half the angle of the sector defining the basin. 

Uplift, u, for the dome is replaced with depth, d, of the 
basin at its centerpoint. The half-width for the dome, w, , 

is replaced with wb, the half-width of one side of the 

basin. 
The total area of the basin ai, in cross-section can then 

be calculated in terms of primary variables d and wb by 

substituting wb and d for w, and u in the solution for ad 
from (8) and multiplying the result by two (to include 
both sides of the basin). The result is: 

Volume of withdrawal basin 

Idealized geometric models of withdrawal basins are 
depicted in Fig. 5. The volume of a withdrawal basin 
associated with a hemispherical dome is expressed using 
the Pappus-Guldinus theorem for calculating the vol- 
ume, v, of a solid of revolution (Eves 1985): 

v = 2nR(a/2). (13) 

In this equation, it is assumed that a planar area, a/2 
(one-half of the total area of the solid in cross-section), is 
revolved about an axis located a distance R from its 
center (Fig. 5a). The volume, vbh, of the withdrawal 
basin associated with a hemispherical dome is calculated 
by substituting the length wb + w, (the distance from the 
center of the dome to the center of the withdrawal basin) 
for R, and ab/2 (the area of one side of the withdrawal 
basin) for a/2 in equation (13) (Fig. 5b). The result is: 

Vbh = 2n(wb + w,)(a&) = 5t(wb + w,)ab. (14) 

The term w, in the equation can be expressed in terms of 
wb as follows. Based on physical models and study of 
natural salt domes, Parker & McDowell (1955) and 
Ramberg (1981) determined the average total width of 
the combined dome and withdrawal basin to be seven 

times the width of the dome itself. Restated, this means 
that one side of a withdrawal basin is approximately 
three times the width of the associated salt dome. The 
half-width of the withdrawal basin is therefore also three 
times the half-width of the dome (see Fig. 4), or: 

wb = 3w,. (15) 

The use of a value other than three for wb/w, will 

produce a change in the numerical values calculated 
using the equations derived, but not in the qualitative 
trends visible in the results. Substituting (15) into (14) 
yields: 

Vbh = Jt[wb + (&/3)] ab = $rWbab. (16) 

Substituting the solution for ai, from (12) into (16) 
results in an equation for the volume of the basin 
associated with a hemispherical dome in terms of the 
primary variables wb and d: 

The volume, vbe, of the withdrawal basin associated 
with an elongate dome is equal to the volume of the 
rounded ends of the basin, calculated in the same man- 
ner as I”bh [equation (16)], plus the volume of the middle, 
trough-shaped parts of the basin (Fig. 5~). The total 
volume Vbe of the elongate withdrawal basin is there- 
fore: 

V&_ = )/bh + &,ab. (18) 

The volume of the withdrawal basin in terms of the 
primary variables wb and d is obtained as follows. First, 
substituting for Vbh from (16) into (18) and rearranging, 
we obtain: 

Vbe = [$r3twb + lb] ai,. (19) 

Then, substituting the solution for ab from (12) into (19), 
we have: 
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Fig. 5. (a) Half of a model withdrawal basin produced by rotating the cross-sectional area, a/2,2x radians about a central 
axis. The center of the area is located a distance R from the axis of rotation. (b) Parameters of a withdrawal basin associated 
with a hemispherical dome: d = axial depth of basin, wt, = half-width of basin, wS = half-width of dome, nb = area of basin in 
cross-section. (c) Additional parameter for a withdrawal basin associated with an elongate dome: Ib = length of basin minus 

rounded ends. 

vbe = 2[$wb + lb] - (l~o(~~pfl - (w;fd2)j 
-[(vi-d]w,]. 

Equation (20) gives the volume of withdrawal basins 
associated with elongate domes in terms of the primary 
variables related to the basin. Use of a value other than 
three for wb/w, will change only the constant 4/3 in this 
equation. 

BALANCING DOME AND BASIN AREA IN 
CROSS-SECTION 

Elongate dome 

The linear portion of an elongate salt dome is modeled 
as growing by planar flow of salt inward from the 
surrounding withdrawal basin perpendicular to the long 
axis of the anticline (see Fig. 1). Hemispherical domes 
and the rounded ends of elongate domes are modeled as 
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growing by radially convergent flow of salt inward from 
the surrounding withdrawal basin toward the center of 
the dome. As discussed later, with our assumption of 
hemispherical ends for an elongate dome, this produces 
a discontinuity in either the depth of the basin or the 
height of the dome near the ends. Barring loss of 
material to extrusion or dissolution, the volume of a 
withdrawal basin (the volume of the depression of the 
salt below the original salt top) should equal the volume 
of the associated dome in a cross-section perpendicular 
to the long axis of an elongate dome. Therefore, we can 
equate the area ab of the withdrawal basin associated 
with a dome to the area ad of the dome [equation (6)]. 
This gives: 

a = a = & cos-‘[l - ("/rd)l 
b d 

180 

- (rd - u)[2r,u - u2]1’2. (21) 

Hemispherical dome 

Balancing the cross-sectional area of a hemispherical 
dome and the area of the associated withdrawal basin is 
not so straightforward. Because salt moves radially in 
toward the dome, the area of the dome in cross-section 
will reflect out-of-plane contributions of salt. The area 
of the dome will, therefore, always be greater than the 
area of the basin viewed in the same cross-section for any 
given degree of uplift. This relationship will be quanti- 
fied below by expressing the ratio of basin area to dome 
area as a function of the ratio of dome uplift to dome 
radius. First, to facilitate comparison with (6), basin 
area ai, is expressed in terms of Yd and U. Equating (9), 
the solution for the volume of a hemispherical dome, to 
(14), the solution for the volume of its associated with- 
drawal basin, produces: 

f u(h$ + u’) = n(wb + ws)ab . (22) 

Solving for ab, substituting 3w, from (15) for wb and 
rearranging yields: 

(23) 

The area of the basin ab can now be expressed in terms of 
rd and u by substituting the solution for w, from (5) into 
(23) and simplifying to get: 

ab = & 3(2rdu - u2)l” + U2 

(2r& - .2)“2 1 ’ 
(24) 

Basin area is expressed as a fraction of dome area by 
dividing (24) by (6), the solution for dome area: 

E 3(2rdu - u2)1’2 + U2 

ab _ (2r,u - u2)1’2 1 

ad nd cos-‘[l - (u/rd)] 
180 

- (rd - u)[2rdu - u2]1’2 

(25) 
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Fig. 6. Withdrawal basin area expressed as a fraction of dome area 
during uplift of a hemispherical dome defined by a fixed radius of 

curvature [equation (29)]. 

Multiplying the numerator and denominator of (25) by 
l/G and simplifying produces: 

ab _ -- 

ad 

(26) 
Equation (26) can be rewritten more simply by defining 
the non-dimensional uplift y, where: 

y = ufrd. (27) 

The non-dimensional uplift can be thought of as a 
measure of the shape of the salt pillow. Lowy describes a 
salt pillow which is broad and low, while large y de- 
scribes a pillow which is higher and narrower and is 
approaching the ‘piercement’ stage of salt dome evolu- 
tion. In general, the equations derived in this section of 
this paper are valid only for y < 1. Substituting (27) into 
(26) and simplifying produces: 

2 

3(2y - Y~)“~ + 
ab _ 

$ 

[ (2y J y2)“2 -- 1 . 
ad 

(28) 
cos-‘(1 - y) - (1 - y)(2y - y2)“2] 

This equation can be further simplified by multiplying 
the numerator and denominator by 1/(2y - Y~)“~. This 
produces the following equation for the ratio of basin 
area to dome area for a hemispherical dome in cross- 
section: 

ab_ 2[3+&] 
ad cos-‘(l - Y) _ (1 _ y) ’ 

(2y - y2)“2 

(29) 

The solution for (29) is plotted in Fig. 6. Inspection of 
that figure reveals that the cross-sectional area of the 
withdrawal basin associated with a hemispherical dome 
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is approximately an order of magnitude less than the 

cross-sectional area of the dome at any given stage of 
dome uplift. This is true despite the fact that the dome 
and withdrawal basin volumes are equal and contrasts 
with the one-to-one relationship between withdrawal 
basin area and dome area in the case of an elongate 
dome. It should be remembered that this result again 
pertains to a width ratio w&v, of three. Use of a 
different ratio would change the constant 1512 in (29). 
For example, if W&J, = 2 were chosen, the constant 
would be 10, leading to a 33% larger value of +,/a,. 

RELATIONSHIP BETWEEN BASIN SUBSIDENCE 
AND DOME UPLIFT 

The equations for dome and basin area derived above 
can also be used to obtain equations relating basin 
subsidence, d, and dome uplift, u. The area of a with- 
drawal basin has been expressed in terms of variables 
relating directly to the basin itself (12) as well as in terms 
of variables relating only to the associated dome 
[equation (21) for elongate domes or equation (24) for 
hemispherical domes]. In Appendix B, (21) and (24) are 
each equated to (12) and transcendental equations are 
derived for withdrawal basin depth with respect to dome 
uplift. The final equations are: 

i$os-l[l - y] - [l - y1.m 

for an elongate basin, and: 

5 3(2y - Y~)“~ + 1 _ n - [ %-.d+b2y 2cos-1 I _ 1 i 2b2y 

90 26 9(2 - y) + b2y 1 
_ 6 9(2 - y) + b2y __ 

2b 
by 1 dzy _ yz (31) 

for a hemispherical one, where b = d/u is the non- 

dimensional depth of the withdrawal basin. 
These equations were solved for non-dimensional 

basin depth as a function of non-dimensional dome 
uplift by trial and error using a spreadsheet. Figure 7 
shows the results for basin subsidence vs dome uplift for 
cases of both infinitely elongated domes (formed by 
purely planar flow of salt) and hemispherical domes 
(formed by purely radial flow of salt). In this case, 
several constants in the equation would change, if a 
different value of +,Iw, were chosen; however, the 
qualitative result, that the withdrawal basins formed by 
purely planar flow of salt into a dome are significantly 
deeper than basins formed by radial flow of salt into a 
dome, would still be true. 

pure radial flow 

0.0 0.2 0.4 0.6 0.6 

DOME UPLIFT/DOME RADIUS 

1.0 

Fig. 7. Withdrawal basin depth expressed as a fraction of dome uplift 
during uplift of a hemispherical dome defined by a fixed radius of 
curvature. Low, broad pillows would lie toward the left side of this 
graph while higher, narrower pillows would lie toward the right. Depth 
is measured as subsidence along the axis of the basin trough. Upper 
curve represents basin depth in the idealized case of pure planar flow 
of salt into the mid-sections of infinitely elongate domes [determined 
by relating equation (12) to equation (21)]. Lower curve represents 
basin depth in the case of pure radial flow of salt into hemispherical 
domes or the rounded ends of elongate domes [determined by relating 
equation (12) to equation (25)]. Points ‘A’ and ‘B’ are the basin-depth- 
to-dome-uplift ratios for a dome-uplift-to-dome-radius ratio of one 

and are discussed in the text. 

DISCUSSION 

One use of the above equations for dome and with- 
drawal basin size and area is to predict the expected 
dimensions in cross-section for quantities associated 
with a salt dome of a particular size. Assume, for 
example, that a salt pillow in the shape of an idealized 
hemispherical dome with a height and radius of 1000 m 
forms from a layer of salt 800 m thick. (The thickness of 
the salt layer is not crucial for the argument which 
follows, as long as it is greater than the calculated depths 
of the withdrawal basins.) In cross-section, the dome 
would have an area of 1.6 km2 [equation (6)]. The 
predicted total width of the withdrawal basin/dome 
system would be 14000 m [i.e. 2(w, + 2w,), where w,, is 
given by equation (15)]. If the flow of salt into the dome 
is purely radial, the withdrawal basin would only have to 
subside approximately 20 m at its center line (two one- 
hundredths of the dome uplift, point A on Fig. 7) over an 
extent 6000 m wide [equation (15)] in order to yield a 
large enough volume of salt to build the dome. The 
withdrawal basin would thus constitute only a small 
perturbation on the thickness of the salt bed (Fig. 8). In 
cross-section, the basin would have an area of approxi- 
mately 0.16 km2, which equals one-tenth the area of the 
dome [equation (12)]. Now assume that purely planar 
flow of salt occurs to form the mid-section of an elongate 
dome of the same height and width. Subsidence of a 
withdrawal basin in this area would be approximately 
200 m (two-tenths of the dome uplift, point B in Fig. 7). 
The dome and withdrawal basin areas for the elongate 
dome would be equal in cross-section and the thickness 
of the original salt layer would be reduced by 25%, as 
shown in Fig. 8. At the same time, assuming purely 
radial flow of salt into the rounded ends of the elongate 
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I 
; top of salt for 
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pillow basin 

Fig. 8. Sketch showing withdrawal basin depths in cross-section for a 
hypothetical salt dome 1000 m in radius, assuming first hemispherical 

and then elongate geometry. 

dome, subsidence of the withdrawal basin in these areas 
could be as little as 20 m. The contrast between the 
subsidence at the center and at the ends of an elongate 
dome is considerable and might lead one to think that no 
salt was contributed to the dome from the areas near its 
ends. Calculations of this type may prove useful for 
estimating the expected size of the withdrawal basin of a 
dome given the dimensions of the dome. A comparison 
between the expected size and that actually observed 
can be used as a check on kinematic models for forma- 
tion of the dome formulated based on other evidence. 

The relationships derived in this paper must also be 
taken into account when using cross-sections to estimate 
whether or not a given dome has lost significant amounts 
of salt due to extrusion and/or dissolution, based on the 
volume of strata in its withdrawal basin. Consider the 
cross-section in Fig. 8, showing the 1000 m dome de- 
scribed above with the 200 m deep withdrawal basin (the 
lower line in Fig. 8). If this is a cross-section taken 
perpendicular to the long axis of an elongate dome 
formed by planar flow of salt, then the observed depth of 
the basin is that expected when the basin and dome 
volumes are equal, and no salt has been lost to disso- 
lution. However, if this is a cross-section across a hemi- 
spherical dome formed by radial flow, the basin volume 
will be significantly greater than the dome volume, and 
significant salt will have been lost. (If no salt had been 
lost, the basin floor would lie at the level of the upper 
line in Fig. 8.) We can estimate the volume of salt lost by 
the following calculation. From equation (9), the vol- 
ume of the hemispherical dome is 2.09 km3. From 
equation (17), the basin volume calculated, assuming 
radial flow into the dome, is 20.1 km3. The difference is 
18.0 km3. In this case, one would conclude that a salt 
volume of approximately nine times the dome volume 
has been lost, presumably to dissolution. This shows the 
extreme sensitivity of volume balancing to the type of 
flow which created the dome, and it implies that esti- 
mation from cross-sections of the amount of salt lost 
during formation of a dome requires accurate knowl- 
edge of the amount of radial flow which has occurred. 

The flow of salt into natural domes is probably never 
purely radial or linear. The curves in Fig. 7 therefore 
represent the maximum and minimum depths of ideal- 

ized withdrawal basins, and there is probably a con- 
tinuum between these two extremes. Near elongate 
domes, however, these extremes could exist in close 
proximity to one another. The discontinuity between 
subsidence due to radial flow of salt vs subsidence due to 
planar flow of salt could potentially create significant 
changes in withdrawal basin depth around the hemi- 
spherical ends of elongate salt domes, where salt flow 
changes from being planar to radial (refer to Fig. 1). 
Assuming the dome maintains a constant height along its 
length, the depth of the withdrawal basin adjacent to the 
rounded ends could be up to an order of magnitude less 
than the depth of the basin along the elongate flanks of 

the dome. As a result, this portion of the basin could be 
missed in studies of the volume balance between with- 
drawal basin sediments and mobilized salt. If, in con- 
trast, the withdrawal basin were assumed to maintain a 
constant depth around the dome, the excess salt flowing 
into the ends could either redistribute itself equally 
throughout the dome or remain at the ends and lead to 
the growth of tall, secondary salt structures in these 
areas. Possible examples of the latter have been ob- 
served by one of the authors (R.C.B.) in confidential, 
unpublished seismic data from the Gulf of Mexico. 

The concepts described in this paper will also apply in 
an inverse manner to small basins of elastic sediments 
developed over a thick layer of salt. Mini-basins of the 
foregoing type, developed by down-building, are 
characteristic of the Louisiana structural style of Worrall 
& Snelson (1989). If the assumptions of geometry made 
in the derivation of the equations in this paper are 
satisfied, these equations can be used to determine the 
expected area balance in cross-section between elastic 
sediments in the mini-basin and the displaced salt. All 
that is needed is to substitute the dimensions of the mini- 
basin for those of the salt dome and the dimensions of 

the displaced salt for those of the withdrawal basin in the 
equations. The equations show that, when a mini-basin 
is elongate in shape, it can be expected that the area 
occupied by the deposited strata and the area occupied 
by the displaced salt will be equal in a cross-section 
drawn perpendicular to the long axis of the basin. 
However, where such a basin is approximately equi- 
dimensional in map view, which is actually more com- 
mon in offshore Louisiana, it can be expected that much 
of the displaced salt will be transported out of the plane 
of the cross-section. This will result in the amount of salt 
in a palinspasticaly restored cross-section being greater 
than that in the present-day section. This is quite com- 
mon in sections in the central Louisiana offshore (Wor- 
rall & Snelson, 1989). The equations show that such an 
increase in salt area during restoration can exist without 
implying dissolution of salt or large-scale regional salt 
transport. The displaced salt from, for example, a 1 km 
deep hemispherical basin can be accommodated by a 
maximum increase of 20 m in the thickness of the salt 
layer surrounding the basin, an increase which is well 
within the range of possibility. This calculation shows 
that large-scale salt transport or dissolution is not 
necessary to explain the development of mini-basins. 
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Given the extreme sensitivity of the withdrawal basin (or 

in this case displaced salt) dimensions to the geometry of 
flow, however, predicting the detailed thickening of the 
salt layer which is expected for a particular mini-basin is 
probably best done in many cases by constructing a 
detailed volume balance specific to the geometry of each 
mini-basin. 

As stated in the Introduction, the above relationships 
have all been developed for the salt pillow stage of salt 
dome growth. Here we would like to discuss the exten- 
sion of the same reasoning to the piercement stage of salt 
dome growth. Emplacement of piercement diapirs is 
discussed by Bishop (1978) and Seni & Jackson (1983). 
As a salt dome enters this stage, it develops an accom- 
panying secondary rim syncline which is narrower with 
respect to dome width than the primary rim syncline 
developed during the pillow stage. Consequently, the 
first modification which must be made in our theory is to 
substitute a different equation for (15) above. Examin- 
ation of a number of structural contour maps of salt 
domes and their secondary peripheral sinks suggests that 
wi, is approximately equal to 2w, for many domes. The 
second modification which must be made has to do with 
the shape of the salt dome, which is now closer to a tall 
column of salt than a hemispherical cap or a cylindrical 
cap with rounded ends. As a first approximation, we can 
assume that an equi-dimensional piercement dome (axi- 
symmetric dome) has the shape of a vertical cylinder 
with flat ends and an elongate piercement dome (salt 
wall) has the shape of a vertical sheet with a flat top and 
rounded ends (Fig. 9). In that case, we can immediately 
write down equations, equivalent to (g), (9) and (11) for 
salt pillows, by inspection of Figs. 9 and 10, as follows: 

area of dome in cross-section = (~2~)~ 
= 2w,u (32) 

volume of axisymmetric dome = (If,,), 
= Jcw$L (33) 

volume of salt wall = ( Vde)p 

= Jcw;u + 2UW,Zd) (34) 

where u, w, and Id have the same definitions as they had 
for salt pillows, and the subscript ‘p’ indicates ‘pierce- 
ment’. 

Note that the height u of the dome as defined here 
does not include the depth h of the withdrawal basin 
(Fig. 10). This is because the salt in the dome below the 
top of the withdrawal basin is replacing salt originally in 
that position in the salt layer. As a result, the total 
apparent height of the salt dome in cross-section will be 
(u + h). The shapes of the withdrawal basins surround- 
ing piercement salt domes are often complex. As a first 
approximation, we will assume that the basins have a 
wedge shape, with their deepest point h adjacent to the 
dome (Figs. 9 and 10). We will further assume that the 
basins completely surround the domes. With these 
assumptions, the area of the basin in a cross-section 
across the center of the axisymmetric dome or perpen- 
dicular to the strike of the salt wall (including both sides 
of the basin) is: 

Hemispherical Dome 

wIthdrawal 
b 

Elongate Dome (Selt Wall) 

Fig. 9. Idealized geometries for piercement salt domes. 

WS - 

Fig. 10. Idealized cross-section of a piercement salt dome and its 
associated withdrawal basin. Cross-section is assumed to be taken 
across the center of a cylindrical dome or perpendicular to the strike of 
a salt wall. The height of the salt dome above the original top of the salt 
layer is denoted by u and the maximum depth of the withdrawal basin 
by h; w, and rq, are the half-widths of the dome and the withdrawal 

basin, respectively. 

(a& = 2wbh. (35) 

For the axisymmetric dome, the volume of the with- 
drawal basin can be found by substituting w,h for a and 
(w,, + ws) for R in (13). The result is: 

(vt& = n(wi, + Mu++), (36) 
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and substituting w, = w,/2 into (36), we get: 

(Vt& = $r w$z. (37) 

Finally, for the salt wall, substitution of (vbh)r for vbh, 
(ub)p for ub and Id for lb in (18) yields: 

(I&& = $ w;h + 2,‘,‘+,&. (38) 

We now have all the equations we need to generate 
comparisons of dome and basin areas and depths 
analogous to those for salt pillows. 

Basin subsidence can be compared with dome uplift 
for axisymmetric domes by equating (33) and (37). 
Doing this and rearranging, we obtain: 

h-2G 
u 3w:,’ 

(39) 

If we let wb = cw,, where c is some constant, then 

(39) becomes: 

h 2 __=-. 
u 3c2 

(40) 

This means that the ratio of basin subsidence to dome 
uplift for an axisymmetric dome depends only on the 
relative widths of the dome and the basin. For our 
assumed value of c = 2 for piercement salt domes, this 
ratio comes out as l/6, which is larger than in the pillow 
case, in accordance with observations. 

The ratio of basin subsidence to dome uplift can be 
calculated for salt walls by equating (34) and (38). After 
rearranging, the result is 

h -_= xw; + 2w,l, 

u 3X 
-WE + 2w& 
2 

(41) 

Substituting wb = cw, into (41) and simplifying pro- 

duces: 

h -_= nw, + 2& 

u 3X 
7 (42) 

- c2w, + 2c1, 
2 

which depends only on the dimensions of the dome and 
the basin. For very long domes (Id >> ws), the terms 
containing w, can be neglected and (41) reduces further 
to: 

h,l _ 
u c’ 

(43) 

which again depends only on the width of the withdrawal 
basin relative to the dome. For c = 2, equation (43) 
predicts a ratio of l/2, again greater than that for a salt 
pillow. 

Finally, for dome and basin area, we again have that 
the areas for an elongate dome (salt wall) are equal in a 
cross-section taken perpendicular to strike. For an axi- 
symmetric dome, we can take the ratio of (32) and (35) 
to obtain: 

@d)p = ws” 

@b)p Wd 
(44) 

Substituting wb = cw, into (44) produces: 

@d)p_& 

@b)p ch 

Finally, substituting (40) into (45), we have: 

(45) 

hd)p _ 3c 
hb)p 2 ’ (46) 

which yields a ratio of three using our assumed value of 2 
for c. Thus, the area of the piercement salt dome in 
cross-section will be three times the area of the associ- 
ated withdrawal basin. 

Finding an unequivocal field example of the principles 
discussed in this paper is difficult. Most seismic data is 
proprietary, and seismic sections of salt domes which 
have been published rarely extend far enough away from 
the dome to show the whole withdrawal basin. Never- 
theless, one relatively clear example can be found in a 
pair of sections published in Jenyon (1986). These sec- 
tions are shown in Fig. 11. The sections cross two salt 
domes from the same area of the North Sea, one an 
axisymmetric piercement dome and one a salt wall. They 
clearly show a larger withdrawal basin associated with 
the salt wall than with the axisymmetric dome. This was 
interpreted by Jenyon as due to the timing of formation 
of the two features, but it can also be explained by the 
principles discussed in this paper. 

SUMMARY AND CONCLUSIONS 

In this paper, salt domes in the pillow stage are 
geometrically modeled as idealized axisymmetric hemi- 
spheres and elongate cylindrical caps, and their associ- 
ated withdrawal basins are modeled as slices through 
torus shapes. Balancing dome and withdrawal basin 
volumes and areas for salt pillows shows that primary 
withdrawal basins (assumed to be seven times the width 
of the dome) in cross-section are very shallow, as shal- 
low as 2% of the dome height in the case of hemi- 
spherical domes. Such basins may not be resolvable on 
seismic lines if the dome has risen no higher than its 
defining radius of curvature. The areas of a dome and its 
associated withdrawal basin will be equal in a cross- 
section taken perpendicular to the strike of an elongate 
dome; however, for a hemispherical dome, the area of 
the dome will be significantly greater than that of the 
basin. 

The results derived here predict a discontinuity near 
the ends of an elongate dome in either the height of the 
dome or the depth of its withdrawal basin. Also, appli- 
cation of the results to a hypothetical salt dome show 
that conclusions regarding the volume of salt lost to 
dissolution are extremely sensitive to the geometry of 
the salt flow forming the dome. Finally, application of 
the results to basins of elastic sediment developed over 
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a 

b 

Fig. 11. Portions of seismic sections for a pair of salt structures from the Southern North Sea. These sections were originally 
published in Jenyon (1986, pp. 134-136) and are used by permission of Chapman and Hall. (a) Axisymmetric piercement 

diapir. (b) Salt wall. In these sections, D denotes the location of the diapir, and the TZ is the top of the salt layer. 

thick beds of salt suggest that out-of-plane motion of salt 
can account for the common result that the amount of 
salt in a palinspastically restored cross-section is greater 
than that in the present-day section. 

Results analogous to those for salt pillows are also 
derived for a simple geometrical mode1 of piercement 
diapirs. These show, in agreement with observations, 
that the areas of domes and basins in cross-section and 
the depths of dome uplift and withdrawal basin subsi- 
dence are typically more nearly equal than they are in 
the salt pillow stage of dome growth; however, there is 
still a difference in cross-sectional area between dome 
and basin for the axisymmetric dome. Also, the depth of 
the withdrawal basin for an axisymmetric dome is still 
less than that for a salt wall of the same height and cross- 
sectional area. 
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List of variables 

al 
a2 
ab 
ad 
b 
C 
d 
h 
lh 
ld 
R 

rd 
rb 
U 
V 
Vbe 

Vbh 

Vbm 
Vde 
Vdh 
Vdm 
W b 
Ws 
W t 
Y 

0 

APPENDIX A 

Total area of sector 
Area of portion of sector below the dome 
Cross-sectional area of withdrawal basin through dome crest 
Cross-sectional area of dome through crest 
Non-dimensional basin subsidence (d/u) 
Ratio of half-width of withdrawal basin to half-width of dome 
Depth of withdrawal basin at trough 
Depth of withdrawal basin for piercement dome 
Length of withdrawal basin minus rounded ends 
Length of elongate dome minus rounded ends 
Distance from midpoint of solid ring to center of axis of 

symmetry 
Radius of curvature defining dome 
Radius of curvature defining withdrawal basin 
Uplift of dome above original top of salt layer 
Volume of torus 
Volume of withdrawal basin associated with an elongate 

dome 
Volume of withdrawal basin associated with a hemispherical 

dome 
Volume of middle section of elongate withdrawal basin 
Volume of elongate dome 
Volume of hemispherical dome 
Volume of middle section of elongate dome 
Half-width of withdrawal basin 
Half-width of dome 
Total width of withdrawal basin 
Non-dimensional dome uplift (u/rd) 
One-half of angle defining withdrawal basin 
Angle defining sector of circle 
O/2 

APPENDIX B 

This appendix gives the details of the derivation of the relationship 
between non-dimensional basin subsidence and non-dimensional 
dome uplift for elongate and for hemispherical domes. 

Consider first the elongate dome. Equation (21), which gives the 
area of the withdrawal basin for such a dome, can be rewritten in terms 
of the non-dimensional variable y, in the form: 

a b = r~d ~ COS-1 1 u 

Also, substituting the expression for w b from (15) into (12) yields: 

~r (3Ws)2 + d 2 2 2d z 

2d 

Then, substituting the expression for w s from (5) into (A2), we obtain: 

2d 2 
ab=2{~8019(2raU222) +d212cos-l[1--9(2rdu _ u2) +d 2] 

+ rouu ,XO 1 
The arccosine term in (A3) can be simplified by multiplying numerator 
and denominator by u -2, and a factor of u 2 can be pulled out of each of 
the other terms to get: 

9,31 ar [u-219(2rd u -- u 2) + d21] 2 -1[-- 2(d2/u2) ] 
ab = __[i--~[ 2u_ld J cos [l--9(2rdu_,_l)+d2u_2J 

- -  3 1[ 9(2rdu -- -u2) + d2 u[ 2d d]l[2ra u -  u2]'/2]. (A4) 

This can be rewritten as: 

[ l u  1  osl 

/ U--'2" 1/2 _3[ I 
Letting y = u/rd and b = d/u, (A5) reduces to: 

- 2b 2 +  ;cos - , -  

Equating (A1) to (A6) produces our final equation relating b and y for 
an elongate diapir. This equation is: 

Yg 1 1--~ c o s -  [1 - y]  - [1 - y]  X / 2 ~ 2 ~ -  y 

c°s-I - 9(2y -1 - 1) =2y2{~8019(2y ~22)+bEtZ [1 2b2 +b2] 

_319(2Y 1 .~ 

or, simplifying: 

:r  c o s - I  [1 - y]  - [1 - y]  X / ~  
180 

- N 2 b  - 9 ( 2 - y )  + 

9(2 - y) + b2y 
- 6 [  ~-~ b y ] V 2 ~ - y .  (A8) 

For a hemispherical diapir, we must use equation (24) from the main 
text in place of equation (21) [i.e. eqn. (A1)]. Equation (24) can be 
rewritten as: 

U )1  U2\1/2 (U/rd) 2 ] 
ab=~(2--~rd 3(2r~ - a/ (2r~_~;~) ] 

~rl + ,  uZ, l,e I (A9) 

and, substituting in y = u/rd, this becomes: 
y2 

a b = r 2 d ( Y ) [ 3 ( 2 y - - y 2 ) l / Z + ~ ] .  (A10) 

Finally, equating (A10) to (A6) and simplifying produces: 

y2 
Y [ 3 ( 2 y - y 2 ) ' / 2 + ~ 1 2 4  

[9(2 - y) + b2y] 2 -1 [1 - 2bEy ] 
- ~-~ [. -~  -] cos L 9(2 - y) + b2y] 

9(2 - y) + bEy 
6[ -~ bYl~/2~-y . (Al1) 


